资讯

研究团队通过单分子追踪技术(AuRBT)首次捕捉到动态过程:SpRY 在靶点处反复尝试解旋却频频失败,而野生型 Cas9 则“一气呵成”。这种“卡壳”现象源于其过强的初始结合力,导致能量屏障升高。
传统药物开发是一个广泛而昂贵的过程,重点是通过考虑其渗透性、溶解性和稳定性的矛盾特性来优化化合物被动扩散到细胞中。这种内吞药物的新过程代表了一种范式转变,通过使用膜受体介导的细胞进入来消除这些挑战。
研究者表示,这项研究综合运用了单细胞多组学技术和基因编辑技术,为研究人类血管发育和疾病提供了一个全新的视角;通过构建详细的细胞状态图谱,他们就能精准追踪细胞分化过程中的基因表达变化和调控网络。此外实验中对hBVOs的器官特异性诱导和疾病建模尝试也展示了其在再生医学和疾病治疗中的巨大潜力。
现在,哥本哈根大学的一项新研究强调了蛋白质研究如何能彻底改变生物学和医学的多个领域。这项研究由哥本哈根大学诺和诺德基金会蛋白质研究中心的科学家领导,发表在著名的《细胞》杂志上。 “我们希望我们的发现将有助于探索药物如何影响蛋白质周转,并有助于开发更好的药物。”我们的研究还可以揭示蛋白质稳定性如何随着年龄的增长而变化,以及我们如何促进健康的衰老,”Jesper Velgaard Olsen教授说。
最近的一项研究表明,黑猩猩幼稚多能干细胞(PSCs)现在可以在细胞培养物中生长。他们成功地创造了黑猩猩早期胚胎模型,称为“囊胚”,并发现抑制一种特定的调节基因对黑猩猩PSC自我更新至关重要。他们还开发了一种无饲料培养系统,消除了对小鼠来源的饲料细胞作为支持的需要。这些发现为灵长类胚胎学提供了有价值的见解,并可能推动干细胞研究和再生医学。